<div dir="ltr"><div>Car* collegh*,</div><div><br></div><div>ricevo e inoltro l'avviso di seminario qui sotto.</div><div><br></div><div>Cordiali saluti,<br></div><div>Lorenzo Tamellini<br></div><div><br></div><div><br></div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>Da: <b class="gmail_sendername" dir="auto">Irene M Sabadini</b> <span dir="auto"><<a href="mailto:irene.sabadini@polimi.it" target="_blank">irene.sabadini@polimi.it</a>></span><br>Date: ven 2 lug 2021 alle ore 15:04<br>Subject: Fwd: Conferenza SMF Prof. Jean Dolbeault<br>To: <<a href="mailto:lorenzo.tamellini@unipv.it" target="_blank">lorenzo.tamellini@unipv.it</a>><br></div><br><br>
<div>
<p>Caro Collega,</p>
<p>cortesemente puoi divulgare l'avviso qui sotto ai colleghi di
Pavia? Credo che sia di interesse.</p>
<p>Un caro saluto,</p>
<p>Irene Sabadini (Direttore SMF di Milano)<br>
</p>
<div>_________________________________________________________<br>
<br>
<p>Si avvisa che in data 6/7/2021, alle ore 17:00, nell'ambito
delle iniziative del <b>Seminario Matematico e Fisico</b> di
Milano<br>
</p>
<div> il<b> Prof. Jean Dolbeault</b>,
Université Paris Dauphine, terrà una conferenza dal titolo:</div>
<div><br>
</div>
<div> <b>Functional inequalities:
nonlinear flows and entropy methods as a tool for obtaining
sharp and constructive results</b><b><br>
</b><br>
</div>
<div><br>
</div>
<div>Abstract: Interpolation
inequalities play an essential role in Analysis with fundamental
consequences in Mathematical Physics, Nonlinear Partial
Differential Equations (PDEs), Markov Processes, etc., and have
a wide range of applications in various areas of Science.
Research interests have evolved over the 80 years: while
mathematicians were originally focussed on abstract properties
(like notions of weak solutions and Cauchy problem in PDEs),
more qualitative questions (for instance, bifurcation diagrams,
multiplicity of the solutions in PDEs and their qualitative
behaviour) progressively emerged. Entropy methods for nonlinear
PDEs is a typical example: in some cases, the optimal constant
in the inequality can be interpreted as the optimal rate of
decay of an entropy for an associated evolution equation. Much
more can be learned on the way.<br>
This lecture is intended to give an overview of various results
on some Gagliardo-Nirenberg-Sobolev and
Caffarelli-Kohn-Nirenberg inequalities obtained during the last
decade. It will not be a global picture of an active area of
research but more a series of snapshots aiming at the
illustration of some emerging tools and new directions of
research.<br>
</div>
<div><br>
</div>
<div>Link per la partecipazione:</div>
<div><a href="https://polimi-it.zoom.us/j/81798558580" target="_blank">https://polimi-it.zoom.us/j/81798558580</a></div>
<div><br>
</div>
<div>Cordiali saluti. <br>
</div>
<div>Irene Sabadini</div>
<div><br>
</div>
</div>
</div>
</div></div></div>