<div dir="ltr"><div></div><div>Martedì 7 settembre 2021, alle ore 15 precise, il Dott. Michele Ruggeri (TU Wien) terrà un seminario dal titolo:</div>
<br>
Convergent finite element methods for the Ericksen model of nematic liquid crystals<br>
<br><div>
Il seminario si terrà in formato *ibrido*, su Zoom al link:</div>
<div><br></div><div><a href="https://us02web.zoom.us/j/85346967892?pwd=dWdBbTZoLzk1aXI3TWswUzZIbkphUT09" rel="noreferrer" target="_blank">https://us02web.zoom.us/j/85346967892?pwd=dWdBbTZoLzk1aXI3TWswUzZIbkphUT09</a><br>
Meeting ID: 853 4696 7892<br>
Passcode: seminario</div><div><br></div><div>e in presenza *in aula Beltrami* del dipartimento di matematica.</div><div></div><div><br>
Pagina web dei Seminari di Matematica Applicata<br>
<a href="https://matematica.unipv.it/ricerca/cicli-di-seminari/seminari-di-matematica-applicata/" rel="noreferrer" target="_blank">https://matematica.unipv.it/ricerca/cicli-di-seminari/seminari-di-matematica-applicata/</a></div><div><br></div><div><br></div><div><br></div><div>---------------------------<br></div><b>
Abstract:</b> The Ericksen model describes nematic liquid crystals (LCs) in terms of a unit-length vector field (director) and a scalar function (degree of orientation).<br>
Compared to the classical Oseen-Frank model, it allows for the description of a larger class of defects.<br>
Equilibrium states of the LC are given by admissible pairs that minimize an energy functional,<br>
which consists of the sum of Oseen-Frank-like energies and a double well potential.<br>
The resulting Euler-Lagrange equations are degenerate for the director, which poses serious<br>
difficulties to formulate mathematically sound algorithms for their approximation.<br>
We propose a simple but novel finite element approximation of the problem that can be<br>
implemented easily within standard finite element packages.<br>
The scheme does not employ a projection to impose the unit-length constraint on the director<br>
and thus circumvents the use of weakly acute meshes,<br>
which are quite restrictive in 3D but are required by recent algorithms for convergence.<br>
We show stability and Gamma-convergence properties of the new method in the presence<br>
of defects. We also discuss an effective nested gradient flow algorithm for computing minimizers<br>
that controls the violation of the unit-length constraint.<br>
We present several simulations in 2D and 3D that document the performance of the proposed<br>
scheme and its ability to capture quite intriguing defects.<br>
This is joint work with Ricardo H. Nochetto and Shuo Yang (University of Maryland).<br>
</div>