<div dir="ltr">
<font size="2"><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none">Dear all,</span></font><div style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><font size="2"><br></font></div><div style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><div><font size="2">As a part of the series of seminars <i>&quot;<span>Insalate</span><span> </span>di Matematica&quot;</i>, 
we <span>remind</span> you that today there is a seminar held by<span style="color:rgb(49,49,49);word-spacing:1px"> <b>Alice Dell&#39;Arciprete</b> (University of East Anglia</span><span style="color:rgb(49,49,49);word-spacing:1px">)</span>.<br>Moreover, we remind you that the seminar
<u>will be held online</u> and it <span>will be <u>broadcast in room 3014</u></span>



 (building U5-Ratio, Università degli Studi di Milano-Bicocca)<font color="#313131">, where you can attend it </font>by <u>prior reservation</u> at the link 
<a href="https://sites.google.com/view/insalate-di-matematica/reservation?authuser=0" target="_blank">https://sites.google.com/view/insalate-di-matematica/reservation?authuser=0</a><br></font>
<font size="2" color="#313131"> You will be required to exhibit your green pass at the entrance of the building.<br></font>

 <font size="2"><br>Here the details:</font></div><div><font size="2"><br></font></div><div><font size="2"><span style="color:rgb(0,0,0);font-family:Montserrat,Tahoma,Meiryo,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none">
<u>Speaker</u>: 
<span style="color:rgb(49,49,49);word-spacing:1px"><b>Alice Dell&#39;Arciprete</b> <b>(University of East Anglia</b></span><b><span style="color:rgb(49,49,49);word-spacing:1px">)</span></b>

<b><span style="font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:1px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;color:rgb(34,34,34)"></span></b>

</span></font></div><div><font size="2"><span style="color:rgb(0,0,0);font-family:Montserrat,Tahoma,Meiryo,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none"><br></span></font></div><div><font size="2"><span><span style="color:rgb(0,0,0);font-family:Montserrat,Tahoma,Meiryo,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none"></span>
<div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><u>Date and time</u>: <b>18th November 2021, 2:00 pm <span>(CET) </span>

</b></div><span class="gmail-im"><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><u>Title</u>: <i><span style="background-color:rgb(241,194,50)">&quot;<span style="color:rgb(34,34,34)"><i><span style="background-color:rgb(241,194,50)"><span style="color:rgb(34,34,34)">Blocks of Ariki-Koike algebras</span></span></i>&quot;</span></span></i></div><br></span></span></font><div style="color:rgb(49,49,49);word-spacing:1px"><font size="2"><i>

<u style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">Google Meet access link</u><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none">:</span><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><font color="#000000">  
<span style="font-family:Roboto,Arial,sans-serif;letter-spacing:0.3px;white-space:nowrap"><font color="#000000"><a href="http://meet.google.com/jcy-vdby-bwn" target="_blank">meet.google.com/jcy-vdby-bwn</a></font></span>



</font></span><i><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)"></span><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;display:inline;float:none"></span></i>

</i></font></div><font size="2"><span><span class="gmail-im"><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><i><span style="color:rgb(34,34,34);background-color:rgb(241,194,50)"></span></i></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto"><u style="color:rgb(49,49,49);word-spacing:1px">Abstract</u><font color="#313131"><span style="word-spacing:1px">:</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal"><font color="#313131"> </font><span style="color:rgb(0,0,0)">R</span></span></font><span style="color:rgb(0,0,0)"><font style="font-family:arial,sans-serif"><span style="line-height:normal">epresentations
 of the symmetric group are </span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">quite well understood, mainly thanks to a
</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">constructive approach given by James who developed the use of combinatorial tools,
 such as diagrams, tableaux and abacuses. This approach </span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">can be
</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">generalise</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">d</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">
 to give techniques for studying representations of related algebras 
including the Hecke algebras of type A and the Ariki-Koike algebras. </span></font></span><div dir="ltr"><span style="color:rgb(0,0,0)"><font style="font-family:arial,sans-serif"><span style="line-height:normal">We consider representations of the Ariki–Koike algebra,
 a q-deformation of the group algebra of the complex reflection group </span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal"><img alt="C_r" title="C_r" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=C%5Fr" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.42027058043463406" style="display: inline; vertical-align: -2.667px;" class="gmail-CToWUd" width="16" height="14"> </span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">wr <img alt="S_n" title="S_n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=S%5Fn" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.9799850952955675" style="display: inline; vertical-align: -2.667px;" class="gmail-CToWUd" width="16" height="14"></span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">. The representations of th</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">is</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">
 algebra are naturally indexed by mu</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">l</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal">tipartitions
 of <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.5340999640569375" style="display: inline;" class="gmail-CToWUd" width="8" height="7">. We examine blocks of the Ariki–Koike algebra, in an attempt to 
generalise the combinatorial representation theory of the Iwahori–Hecke 
algebra.</span></font><font style="font-family:arial,sans-serif"><span style="line-height:normal"><br></span></font><span style="font-family:arial,sans-serif"></span><span style="font-family:arial,sans-serif"><span style="line-height:normal">In
 particular, we prove a sufficient condition such
 that restriction of modules leads to a natural correspondence between 
the multipartitions of <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.7442559658127477" style="display: inline;" class="gmail-CToWUd" width="8" height="7"> whose Specht modules belong to a block <img alt="B" title="B" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.6436856065165231" style="display: inline; vertical-align: -0.667px;" class="gmail-CToWUd" width="11" height="11"> and 
those of <img alt="n-\delta_i(B)" title="n-\delta_i(B)" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n-%5Cdelta%5Fi(B)" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.38504445277507826" style="display: inline; vertical-align: -4px;" class="gmail-CToWUd" width="65" height="16"> </span><span style="line-height:normal"> whose Specht modules belong to the block <img alt="B&#39;" title="B&#39;" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B&#39;" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.7401504914824946" style="display: inline; vertical-align: -0.333px;" class="gmail-CToWUd" width="15" height="12"> </span><span style="line-height:normal">,
 obtained from <img alt="B" title="B" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B" id="gmail-m_7006365614442661043gmail-m_130140017340492425m_4127686596674042823m_3689064146013177129l0.16545871022456993" style="display: inline; vertical-align: -0.667px;" class="gmail-CToWUd" width="11" height="11"> applying a Scopes equivalence.</span></span></span></div>

<div dir="ltr"><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div></div>

</div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div></span><div dir="auto"><u style="color:rgb(49,49,49);word-spacing:1px">Keywords</u><font color="#313131"><span style="word-spacing:1px">:</span></font><font color="#313131"><span style="word-spacing:1px"> Symmetric group, Ariki-Koike algebra, representation theory, combinatorics, abacus, block.

</span></font><div dir="auto"><br></div>

</div><span class="gmail-im"><div style="word-spacing:1px"><font color="#313131"><br></font></div><div dir="auto"><span style="color:rgb(0,0,0)"><i><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk <u>after the starting time</u>, we kindly ask you to ensure that <u>your microphone and webcam are turned off</u> **</b></i></span><br></div></span></span></font></div><font size="2"><span class="gmail-im"><span><div><br></div><div><span style="color:rgb(0,0,0)">We are looking forward to seeing you!</span><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" target="_blank">insalate.matematica@unimib.it</a>.</div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br>The organizers: Luigi Appolloni, Andrea Bisterzo, Alberto Cassella, Francesca Cottini, Ludovico Marini</div></div></span></span></font></div>

</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Il giorno gio 11 nov 2021 alle ore 13:59 Mbs Insalate Di Matematica &lt;<a href="mailto:insalate.matematica@unimib.it">insalate.matematica@unimib.it</a>&gt; ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">
<div dir="ltr"><div style="color:rgb(49,49,49);word-spacing:1px">As part of the series of seminars <i>&quot;Insalate di Matematica&quot;</i>, <b>Alice Dell&#39;Arciprete</b>, PhD student at <span style="color:rgb(34,34,34);word-spacing:0px">the University of East Anglia</span><font style="word-spacing:0px" color="#313131"><span style="word-spacing:1px">, will deliver a talk. </span></font></div><div style="color:rgb(49,49,49);word-spacing:1px">The seminar will be held online and, according to the current Covid regulations, it <span>will also be broadcast in room 3014</span> <b>(more information below)</b>.</div><div style="color:rgb(49,49,49);word-spacing:1px"><br></div><div style="color:rgb(49,49,49);word-spacing:1px"><span style="color:rgb(34,34,34)">Here the details:</span></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><u>Date and time</u>: <b>18th November 2021, 2:00 pm </b></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><u>Title</u>: <i><span style="background-color:rgb(241,194,50)">&quot;<span style="color:rgb(34,34,34)">Blocks of Ariki-Koike algebras&quot;</span></span><br><span style="color:rgb(34,34,34);background-color:rgb(241,194,50)"></span></i></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="ltr"><u style="color:rgb(49,49,49);word-spacing:1px">Abstract</u><font color="#313131"><span style="word-spacing:1px">: </span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">R</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">epresentations
 of the symmetric group are </span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">quite well understood, mainly thanks to a
</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">constructive approach given by James who developed the use of combinatorial tools,
 such as diagrams, tableaux and abacuses. This approach </span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">can be
</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">generalise</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">d</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">
 to give techniques for studying representations of related algebras 
including the Hecke algebras of type A and the Ariki-Koike algebras. </span></font></div><div dir="ltr"><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">We consider representations of the Ariki–Koike algebra,
 a q-deformation of the group algebra of the complex reflection group </span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal"><img alt="C_r" title="C_r" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=C%5Fr" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.42027058043463406" style="display: inline; vertical-align: -2.667px;" width="16" height="14"> </span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">wr <img alt="S_n" title="S_n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=S%5Fn" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.9799850952955675" style="display: inline; vertical-align: -2.667px;" width="16" height="14"></span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">. The representations of th</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">is</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">
 algebra are naturally indexed by mu</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">l</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal">tipartitions
 of <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.5340999640569375" style="display: inline;" width="8" height="7">. We examine blocks of the Ariki–Koike algebra, in an attempt to 
generalise the combinatorial representation theory of the Iwahori–Hecke 
algebra.</span></font><font style="font-family:arial,sans-serif" size="2"><span style="line-height:normal"><br></span></font><span style="font-family:arial,sans-serif"><font size="2"></font></span><span style="font-family:arial,sans-serif"><font size="2"><span style="line-height:normal">In
 particular, we prove a sufficient condition such
 that restriction of modules leads to a natural correspondence between 
the multipartitions of <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.7442559658127477" style="display: inline;" width="8" height="7"> whose Specht modules belong to a block <img alt="B" title="B" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.6436856065165231" style="display: inline; vertical-align: -0.667px;" width="11" height="11"> and 
those of <img alt="n-\delta_i(B)" title="n-\delta_i(B)" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=n-%5Cdelta%5Fi(B)" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.38504445277507826" style="display: inline; vertical-align: -4px;" width="65" height="16"> </span></font><font size="2"><span style="line-height:normal"> whose Specht modules belong to the block <img alt="B&#39;" title="B&#39;" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B&#39;" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.7401504914824946" style="display: inline; vertical-align: -0.333px;" width="15" height="12"> </span><span style="line-height:normal">,
 obtained from <img alt="B" title="B" src="https://s0.wp.com/latex.php?zoom=3&amp;bg=ffffff&amp;fg=000000&amp;s=0&amp;latex=B" id="gmail-m_8296668345977727476m_4127686596674042823m_3689064146013177129l0.16545871022456993" style="display: inline; vertical-align: -0.667px;" width="11" height="11"> applying a Scopes equivalence.</span></font></span><span style="font-family:arial,sans-serif"></span>

<div dir="auto"><u style="color:rgb(49,49,49);word-spacing:1px"><br>Keywords</u><font color="#313131"><span style="word-spacing:1px">: symmetric group, Ariki-Koike algebra, representation theory, combinatorics, abacus, block.

</span></font></div><div dir="auto"><br></div><div dir="auto" style="word-spacing:1px"><font color="#313131"><br></font></div><div style="word-spacing:1px"><font color="#313131"><b><u>Information to attend in room 3014<br></u></b></font></div><div style="word-spacing:1px"><font color="#313131">The
 seminar will<span> also be broadcast</span>

 in room 3014, at the building U5-Ratio, 
Università degli Studi di Milano Bicocca. <span>For the traceability of persons present in the department</span>,

<span></span>

</font><span style="color:rgb(49,49,49)"> reservation is mandatory. You can reserve at the following link: </span><a href="https://sites.google.com/view/insalate-di-matematica/reservation?authuser=0" target="_blank">https://sites.google.com/view/insalate-di-matematica/reservation?authuser=0</a></div><div style="word-spacing:1px"><font color="#313131">We also remind that you will be required to exhibit your green pass at the entrance of the building.</font></div><div style="word-spacing:1px"><font color="#313131"><br></font></div><div style="word-spacing:1px"><b style="color:rgb(49,49,49)"><u>Information to attend online</u></b></div><div style="word-spacing:1px"><font color="#313131">The seminar will be streamed via</font><font color="#313131"> Google Meet platform at the following link: <a href="https://meet.google.com/jcy-vdby-bwn" target="_blank">https://meet.google.com/jcy-vdby-bwn</a><br></font><span style="font-family:Roboto,Arial,sans-serif;letter-spacing:0.3px;white-space:nowrap"></span></div><div dir="auto"><i><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk <u>after the starting time</u>, we kindly ask you to ensure that <u>your microphone and webcam are turned off</u> **</b></i><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px">You can find the poster of the event in the attachment. We are looking forward to seeing you!</div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" target="_blank">insalate.matematica@unimib.it</a>.</div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br></div><div dir="auto" style="color:rgb(49,49,49);word-spacing:1px"><br>The organizers: Luigi Appolloni, Andrea Bisterzo, Alberto Cassella, Francesca Cottini, Ludovico Marini</div></div></div>

</div>
</blockquote></div>