<div dir="ltr"><div dir="auto"><div dir="auto">Dear all,<div dir="auto"><br></div><div dir="auto">We remind you the upcoming talk of "Insalate di Matematica".</div><div dir="auto">Here the details:</div><div dir="auto"><br></div><div dir="auto"><u>Speaker</u>: Bianca Marchionna (Universität Bielefeld &<span class="gmail-Apple-converted-space"> </span>Università degli Studi di Milano Bicocca) </div><div dir="auto"><br></div><div dir="auto"><u>Date and time</u>: <b>11th of January 2023, 5:00 pm (CET)</b></div><div dir="auto"><br></div><div dir="auto"><u>Information to attend</u></div><div dir="auto"><u>In presence</u>: The seminar will take place in room 2109, at the building U5-Ratio, Università degli Studi di Milano Bicocca<i> (be careful with the change of usual room)</i>.</div><div dir="auto"><u>Online</u>: The seminar will be streamed via Webex platform at the following link: <font color="#0000ee"><u><a href="https://unimib.webex.com/unimib/j.php?MTID=md5d2ff82980593d747d5fb5f2d0aa084" rel="noreferrer noreferrer noreferrer" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=md5d2ff82980593d747d5fb5f2d0aa084</a></u></font> (Password: Insalate (46725283 from phones))</div><div dir="auto"><br></div><div dir="auto"><u>Title</u>: "An introduction to zeta functions"</div><div dir="auto"><br></div><div dir="auto"><u>Abstract</u>: <span style="font-size:12.8px">A zeta function is a function in the complex variable </span><img alt="s" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=s" height="7" width="6" style="font-size:12.8px;display:inline;vertical-align:-0.333px"><span style="font-size:12.8px"> defined by a Dirichlet series </span><img alt="\sum_{n=1}^{+\infty} a_n n^{-s}" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=%5Csum%5F%7Bn=1%7D%5E%7B%2B%5Cinfty%7D%09a%5Fn%09n%5E%7B-s%7D" height="19" width="82" style="font-size:12.8px;display:inline;vertical-align:-5px"><span style="font-size:12.8px">. The first example has been the Riemann zeta function, a kind of prototype for the whole theory. More examples can be generated whenever the </span><img alt="a_n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=a%5Fn" height="9" width="15" style="font-size:12.8px;display:inline;vertical-align:-2.667px"><span style="font-size:12.8px">'s count prescribed subobjects of a given structure (e.g., subgroups of index </span><img alt="n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=n" height="7" width="8" style="font-size:12.8px;display:inline;vertical-align:-0.333px"><span style="font-size:12.8px"> in a group, loops of length </span><img alt="n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=n" height="7" width="8" style="font-size:12.8px;display:inline;vertical-align:-0.333px"><span style="font-size:12.8px"> in a graph ...).</span></div><div dir="auto" style="font-size:12.8px">The seminar aims at giving an overview on the world of zeta functions and on some of the most common methods used wherein, with a particular emphasis on Group Theory. After a brief introduction on Dirichlet series, the discussion will vary from classical results to more recent developments and works in progress.</div><div dir="auto"><br></div><div dir="auto"><u>Keywords</u>: asymptotic algebra, Dirichlet series, group theory, zeta functions</div><div dir="auto"><br></div><div dir="auto"><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk after the starting time, we kindly ask you to ensure that your microphone and webcam are turned off **</b></div><div dir="auto"><br></div><div dir="auto">You can find the poster of the event in the attachment.</div><div dir="auto">We are looking forward to seeing you! </div><div dir="auto"><br></div><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica22/</a>.</div><div dir="auto"><br></div><div dir="auto">The organizers: Andrea Bisterzo, Alberto Cassella, Bianca Marchionna, Andrea Rivezzi, Giovanni Siclari, Marta Tameni, Matteo Tarocchi, Marco Zullino.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Il Gio 5 Gen 2023, 10:00 Mbs Insalate Di Matematica <<a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>> ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="auto"><div dir="ltr"><div dir="auto">Dear all,<div dir="auto"><br></div><div dir="auto">As part of the series of seminars "Insalate di Matematica", <b>Bianca Marchionna</b> (Universität Bielefeld & Università degli Studi di Milano-Bicocca) will give a talk. </div><div dir="auto">The speaker will deliver the talk <u>in presence</u> and the meeting will also be broadcasted <u>online</u> (see below for more information)</div><div dir="auto"><br></div><div dir="auto">Here the details:</div><div dir="auto"><br></div><div dir="auto"><u>Date and time</u>: 11th of January 2023, 5:00 pm (CET)</div><div dir="auto"><br></div><div dir="auto"><u>Title</u>: "An introduction to zeta functions"</div><div dir="auto"><br></div><div dir="auto"><u>Abstract</u>: A zeta function is a function in the complex variable <img alt="s" title="s" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=s" id="m_8216619570158813796m_8192023297194660108m_-1617369006670045757m_-4294823208602018901m_5217085239236212042m_5817287759350213783m_6397026267447434988m_-2229605192776576809m_2059919363630292327m_-1919164608637074906m_6466014516606043759l0.6329426841241423" style="display:inline;vertical-align:-0.333px" height="7" width="6"> defined by a Dirichlet series <img alt="\sum_{n=1}^{+\infty} a_n n^{-s}" title="\sum_{n=1}^{+\infty} a_n n^{-s}" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=%5Csum%5F%7Bn=1%7D%5E%7B%2B%5Cinfty%7D%09a%5Fn%09n%5E%7B-s%7D" id="m_8216619570158813796m_8192023297194660108m_-1617369006670045757m_-4294823208602018901m_5217085239236212042m_5817287759350213783m_6397026267447434988m_-2229605192776576809m_2059919363630292327m_-1919164608637074906m_6466014516606043759l0.6471685361847963" style="display:inline;vertical-align:-5px" height="19" width="82">. The first example has been the Riemann zeta function, a kind of prototype for the whole theory. More examples can be generated whenever the <img alt="a_n" title="a_n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=a%5Fn" id="m_8216619570158813796m_8192023297194660108m_-1617369006670045757m_-4294823208602018901m_5217085239236212042m_5817287759350213783m_6397026267447434988m_-2229605192776576809m_2059919363630292327m_-1919164608637074906m_6466014516606043759l0.7772223657745345" style="display:inline;vertical-align:-2.667px" height="9" width="15">'s count prescribed subobjects of a given structure (e.g., subgroups of index <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=n" id="m_8216619570158813796m_8192023297194660108m_-1617369006670045757m_-4294823208602018901m_5217085239236212042m_5817287759350213783m_6397026267447434988m_-2229605192776576809m_2059919363630292327m_-1919164608637074906m_6466014516606043759l0.5742762051294363" style="display:inline;vertical-align:-0.333px" height="7" width="8"> in a group, loops of length <img alt="n" title="n" src="https://s0.wp.com/latex.php?zoom=3&bg=ffffff&fg=000000&s=0&latex=n" id="m_8216619570158813796m_8192023297194660108m_-1617369006670045757m_-4294823208602018901m_5217085239236212042m_5817287759350213783m_6397026267447434988m_-2229605192776576809m_2059919363630292327m_-1919164608637074906m_6466014516606043759l0.7282192630654081" style="display:inline;vertical-align:-0.333px" height="7" width="8"> in a graph ...).</div><div dir="auto">The seminar aims at giving an overview on the world of zeta functions and on some of the most common methods used wherein, with a particular emphasis on Group Theory. After a brief introduction on Dirichlet series, the discussion will vary from classical results to more recent developments and works in progress.</div><div dir="auto"><br></div><div dir="auto"><u>Keywords</u>: asymptotic algebra, Dirichlet series, group theory, zeta functions</div><div dir="auto"><br></div><div dir="auto"><u><b>Information to attend in room 2109</b></u></div><div dir="auto">The seminar will take place in room 2109, at the building U5-Ratio, Università degli Studi di Milano Bicocca <i>(be careful with the change of usual room)</i>.</div><div dir="auto"><br></div><div dir="auto"><u><b>Information to attend online</b></u></div><div dir="auto"><a href="https://unimib.webex.com/unimib/j.php?MTID=md5d2ff82980593d747d5fb5f2d0aa084" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=md5d2ff82980593d747d5fb5f2d0aa084</a> (Password: Insalate (46725283 from phones))<br></div><div dir="auto"><br></div><div dir="auto"><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk after the starting time, we kindly ask you to ensure that your microphone and webcam are turned off **</b></div><div dir="auto"><br></div><div dir="auto">You can find the poster of the event in the attachment. </div><div dir="auto">We are looking forward to seeing you! </div><div dir="auto"><br></div><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica22/</a></div><div dir="auto"><br></div><div dir="auto">The organizers: Andrea Bisterzo, Alberto Cassella, Bianca Marchionna, Andrea Rivezzi, Giovanni Siclari, Marta Tameni, Matteo Tarocchi, Marco Zullino.</div></div>
</div></div>
</blockquote></div></div>
</div>