<div dir="auto"><div dir="ltr"><font color="#000000">Dear all,</font><div dir="auto"><font color="#000000"><br></font></div><div dir="auto"><font color="#000000">We remind you the upcoming talk of "Insalate di Matematica".</font></div><div dir="auto"><font color="#000000">Here the details:</font></div><div dir="auto"><font color="#000000"><br></font></div><div dir="auto"><font color="#000000"><u>Speaker</u>: <b>Victoria Callet</b> (IRMA, Université de Strasbourg)</font></div><span><font color="#000000"><div dir="auto"><br></div><div dir="auto"><u>Date and time</u>:<span> </span><b>8th of February 2023, 4:00 pm (CET)</b></div><div dir="auto"><br></div></font></span><div dir="auto"><u><font color="#000000">Information to attend</font></u></div><div dir="auto"><font color="#000000"><u>In presence</u>: The seminar will take place in room 3014, at the building U5-Ratio, Università degli Studi di Milano Bicocca.</font></div><div dir="auto"><font color="#000000"><u>Online</u>: The seminar will be streamed via Webex platform at the following link:<span> </span><a href="https://unimib.webex.com/unimib/j.php?MTID=mca7fcafdffd13a89d8973ed687f02bbe" rel="noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=mca7fcafdffd13a89d8973ed687f02bbe</a> (Password: Insalate (46725283 from phones))</font></div><span><font color="#000000"><div dir="auto"><br></div><div dir="auto"><u>Title</u>: "Persistent Homology and Application to Music Classification"</div><div dir="auto"><br></div><div dir="auto"><u>Abstract</u>: Persistent homology is a computational tool which was created in the end of the 20th century for applied algebraic topology. The main idea is to understand the topological structure of a starting object by progressive approximations: for that we use simplicial theory and more precisely simplicial complexes and homology, which we will begin by remind the basis. In practice, we extract from our starting object a point cloud and we change it into a filtered simplicial complex by using an algorithm called the Vietoris-Rips filtration. Persistent homology then encodes the evolution of homology classes and more precisely their lifespan in the new created filtration. We will represent all these informations on a family of graphs called barcodes, from which we will be able to analyze or even compare several starting objects: this process is called Topological Data Analysis. As an illustration of persistent homology and TDA, we will see how we can apply it to classification of musical style.</div><div dir="auto"><br></div><div dir="auto"><u>Keywords</u>:<span> </span>Persistent homology, simplicial theory, applied algebraic topology, topological data analysis, barcodes, music classification.</div><div dir="auto"><br></div><div dir="auto"><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk after the starting time, we kindly ask you to ensure that your microphone and webcam are turned off **</b></div><div dir="auto"><br></div><div dir="auto">You can find the poster of the event in the attachment.</div><div dir="auto">We are looking forward to seeing you! </div><div dir="auto"><br></div></font></span><div dir="auto"><font color="#000000">For further information, please visit our website:<span> </span><a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a><span> </span>or contact us at<span> </span><a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page:<span> </span><a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica22/</a>.</font></div><span><font color="#000000"><div dir="auto"><br></div><div dir="auto">The organizers: Andrea Bisterzo, Alberto Cassella, Bianca Marchionna, Andrea Rivezzi, Giovanni Siclari, Marta Tameni, Matteo Tarocchi, Marco Zullino.</div></font></span></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Il giorno mer 1 feb 2023 alle ore 10:00 Mbs Insalate Di Matematica <<a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>> ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="ltr">Dear all,<div dir="auto"><br></div><div dir="auto">As part of the series of seminars "Insalate di Matematica", <b>Victoria Callet</b> (IRMA, Université de Strasbourg) will give a talk. </div><div dir="auto">The speaker will deliver the talk <u>in presence</u> and the meeting will also be broadcasted <u>online</u> (see below for more information).</div><div dir="auto"><br></div><div dir="auto">Here the details:</div><div dir="auto"><br></div><div dir="auto"><u>Date and time</u>: <b>8th of February 2023, 4:00 pm (CET)</b></div><div dir="auto"><br></div><div dir="auto"><u>Title</u>: "<i style="background-color:rgb(255,224,130)">Persistent Homology and Application to Music Classification</i>"</div><div dir="auto"><br></div><div dir="auto"><u>Abstract</u>: Persistent homology is a computational tool which was created in the end of the 20th century for applied algebraic topology. The main idea is to understand the topological structure of a starting object by progressive approximations: for that we use simplicial theory and more precisely simplicial complexes and homology, which we will begin by remind the basis. In practice, we extract from our starting object a point cloud and we change it into a filtered simplicial complex by using an algorithm called the Vietoris-Rips filtration. Persistent homology then encodes the evolution of homology classes and more precisely their lifespan in the new created filtration. We will represent all these informations on a family of graphs called barcodes, from which we will be able to analyze or even compare several starting objects: this process is called Topological Data Analysis. As an illustration of persistent homology and TDA, we will see how we can apply it to classification of musical style.</div><div dir="auto"><br></div><div><div dir="auto"><u>Keywords</u>: Persistent homology, simplicial theory, applied algebraic topology, topological data analysis, barcodes, music classification.</div><div dir="auto"><br></div><div dir="auto"><u><b>Information to attend in room 3014</b></u></div><div dir="auto">The seminar will take place in room 3014, at the building U5-Ratio, Università degli Studi di Milano Bicocca.</div><div dir="auto"><br></div><div dir="auto"><u><b>Information to attend online</b></u></div><div dir="auto"><font color="#0000ff"><a href="https://unimib.webex.com/unimib/j.php?MTID=mca7fcafdffd13a89d8973ed687f02bbe" rel="noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=mca7fcafdffd13a89d8973ed687f02bbe</a></font> (Password: Insalate (46725283 from phones))<br></div><div dir="auto"><br></div><div dir="auto"><b>** We inform you that the talk will be recorded and uploaded on our website. If you join the talk after the starting time, we kindly ask you to ensure that your microphone and webcam are turned off **</b></div><div dir="auto"><br></div><div dir="auto">You can find the poster of the event in the attachment. </div><div dir="auto">We are looking forward to seeing you! </div><div dir="auto"><br></div><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica22/</a></div><div dir="auto"><br></div><div dir="auto">The organizers: Andrea Bisterzo, Alberto Cassella, Bianca Marchionna, Andrea Rivezzi, Giovanni Siclari, Marta Tameni, Matteo Tarocchi, Marco Zullino.</div></div></div></div>
</blockquote></div></div>