<div dir="ltr"><div class="gmail_default" style="font-family:tahoma,sans-serif">Giro ai dottorandi questo avviso di scuola, arrivato attraverso mailing list dei coordinatori,</div><div class="gmail_default" style="font-family:tahoma,sans-serif">PC</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>Da: <strong class="gmail_sendername" dir="auto">Valter Moretti</strong> <span dir="auto">&lt;<a href="mailto:valter.moretti@unitn.it" target="_blank">valter.moretti@unitn.it</a>&gt;</span><br>Date: gio 9 mar 2023 alle ore 23:37<br>Subject: [CoordinatoriMate] Fwd: Fwd: Scuola in Mathematical foundations of Quantum Machine Learning<br>To:  &lt;<a href="mailto:dottorati_matematica_italia@fields.dm.unipi.it" target="_blank">dottorati_matematica_italia@fields.dm.unipi.it</a>&gt;<br></div><br><br><div dir="ltr">Cari Colleghi Coordinatori, vi giro l&#39;avviso di questa scuola estiva che abbiamo organizzato e che potrebbe essere di interesse per alcuni dei vostri dottorandi.<div>Cordiali saluti</div><div>Valter Moretti <br clear="all"><div><div dir="ltr" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><br>------------------------------------------------------------------<br><br>Prof. Valter Moretti, Ph.D</div><div dir="ltr">Head of the Doctoral School in Mathematics<br>Department of  Mathematics,<br>University of Trento,<br>via Sommarive 14<br>38123 Povo (Trento)<br><a href="https://moretti.maths.unitn.it/home.html" target="_blank">https://moretti.maths.unitn.it/home.html</a></div></div></div></div></div><br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><br></div><br><br>
  

    
  
  <div>
    <p><br>
    </p>
    <div>
      <p><br></p><div>
        <p><br>
        </p>
        <div><br>
          <p>---------------------------------------------------------------------------</p>
          <p><a href="http://datascience.maths.unitn.it/events/qml2023/" target="_blank">http://datascience.maths.unitn.it/events/qml2023/</a><br>
          </p>
          <div>
            <div>
              <div>
                
                  <h1><a href="http://datascience.maths.unitn.it/events/qml2023/" target="_blank">Mathematical
                      foundations of Quantum Machine Learning</a></h1>
                  <p><a href="http://datascience.maths.unitn.it/events/qml2023/" target="_blank">http://datascience.maths.unitn.it/events/qml2023/</a></p>
                
                
                  <p><a href="https://www.maths.unitn.it/" target="_blank"><img src="http://datascience.maths.unitn.it/events/qml2023/unitn.jpg" alt="Department of Mathematics, University of
                        Trento" width="250"></a></p>
                  <h3 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600a-summer-school-promoted-by-the-department-of-mathematics-of-the-university-of-trento">A
                    Summer School promoted by the Department of
                    Mathematics of the University of Trento also funded
                    by Q@TN and TIFPA-INFN<br>
                  </h3>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600when-10-15-july-2023">When: <em>10-14 July
                      2023</em></h2>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600where-university-of-trento">Where: University
                    of Trento</h2>
                  <ul>
                    <li>Povo 1 building at polo F. Ferrari, Room A102</li>
                    <li>Via Sommarive 5, 38123 Povo - Trento</li>
                  </ul>
                  <p><em>The school will be held exclusively in presence
                      in Trento. In case of impediments due to the
                      COVID-19 pandemic, the school will run remotely on
                      the same dates.</em></p>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600outline">Outline</h2>
                  <p>Quantum Machine Learning is a rapidly emerging
                    research area where the power of quantum computing
                    is applied to machine learning tasks and represents
                    one of the most promising applications of
                    fault-tolerant quantum computers. Despite the large
                    number of recent achievements in this area, several
                    challenges are still present. Fundamental questions,
                    such as the effective uses of quantum algorithms and
                    the proof of quantum supremacy in this field, need
                    to be addressed. To this end, effective mathematical
                    techniques play a fundamental role.</p>
                  <p>The aim of the School is to present in an
                    accessible way to a wide audience the mathematical
                    theory underlying Quantum Machine Learning, through
                    three mini courses held by researchers active in
                    this field. Moreover, the School aims to provide an
                    opportunity for different communities to meet up,
                    fostering the interactions, allowing exchanges of
                    ideas and methods and contributing to the diffusion
                    of open problems.</p>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600registration">Registration</h2>
                  <ul>
                    <li>The School is meant mainly for master and
                      graduate students, but also for postdocs, young as
                      well as senior researchers interested in
                      approaching this blooming research field.</li>
                    <li>The ideal participant has a good background in
                      Mathematics, Probability, Statistics or Data
                      Science. However the application is open to
                      everyone.</li>
                    <li>The course will be delivered in English.</li>
                    <li>Registration fees
                      <ul>
                        <li>Master and PhD students: 50euro</li>
                        <li>Academics: 150euro</li>
                        <li>Non academics: 200euro</li>
                      </ul>
                    </li>
                    <li>Registration includes coffee breaks and lunches.</li>
                    <li>
                      <p>Attendance is limited to <strong>60 people</strong>.
                        Registration is compulsory. To register follow
                        this <a href="https://webapps.unitn.it/form/it/Web/Application/convegni/MFQML2023" target="_blank">link
                        </a><a href="https://webapps.unitn.it/form/it/Web/Application/convegni/MFQML2023" target="_blank">https://webapps.unitn.it/form/it/Web/Application/convegni/MFQML2023</a>
                        <br>
                      </p>
                    </li>
                    <li>
                      <p>you will be asked some information about
                        yourself and standard documentation. To receive
                        full consideration please submit your
                        application no later than <strong>1 June 2023</strong>.</p>
                    </li>
                    <li>For further information, please contact <a href="mailto:datascience.maths@unitn.it" target="_blank">datascience.maths@unitn.it</a></li>
                  </ul>
                  <h1 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600lectures">Lectures</h1>
                  <table>
                    <tbody>
                      <tr>
                        <td><img src="http://datascience.maths.unitn.it/events/qml2023/GiacomoDePalma.jpg" alt="Giacomo De Palma" width="150"></td>
                        <td>
                          <table rules="none" cellspacing="0" cellpadding="3" border="0">
                            <tbody>
                              <tr>
                                <td>
                                  <h2>Giacomo De Palma</h2>
                                </td>
                              </tr>
                              <tr>
                                <td> <i>(University of Bologna)</i> </td>
                              </tr>
                              <tr>
                                <td> <a href="https://www.unibo.it/sitoweb/giacomo.depalma/en" target="_blank">Personal
                                    website</a> </td>
                              </tr>
                            </tbody>
                          </table>
                        </td>
                      </tr>
                    </tbody>
                  </table>
                  <u></u>
                    <u></u>Bio<u></u>
                    Giacomo De Palma is Associate Professor of
                    Mathematical Physics in the Department of
                    Mathematics of the University of Bologna (Italy). He
                    received his PhD from Scuola Normale Superiore
                    (Pisa, Italy). He was postdoc and Marie-Curie Fellow
                    at the University of Copenhagen (Denmark), postdoc
                    at MIT (USA) and tenure-track Assistant Professor at
                    Scuola Normale Superiore. Giacomo De Palma&#39;s main
                    research interests are the mathematical aspects of
                    quantum information and quantum computing. His
                    current research aims to develop new quantum
                    algorithms for machine learning and to improve the
                    theoretical understanding of the capabilities of
                    quantum computers. To achieve these goals, he is
                    applying insights from a quantum generalization of
                    optimal mass transport that he has proposed. He has
                    published in peer-reviewed journals including
                    Communications in Mathematical Physics, Nature
                    Photonics, Physical Review Letters, PRX Quantum and
                    IEEE Transactions on Information Theory and in
                    peer-reviewed proceedings including the proceedings
                    of the Conference on Neural Information Processing
                    Systems and of the International Conference on
                    Machine Learning. <u></u>
                  <table>
                    <tbody>
                      <tr>
                        <td><img src="http://datascience.maths.unitn.it/events/qml2023/DarioTrevisan.jpg" alt="Dario Trevisan" width="150"></td>
                        <td>
                          <table rules="none" cellspacing="0" cellpadding="3" border="0">
                            <tbody>
                              <tr>
                                <td>
                                  <h2>Dario Trevisan</h2>
                                </td>
                              </tr>
                              <tr>
                                <td> <i>(University of Pisa)</i> </td>
                              </tr>
                              <tr>
                                <td> <a href="http://people.dm.unipi.it/trevisan/index_EN.html" target="_blank">Personal
                                    website</a> </td>
                              </tr>
                            </tbody>
                          </table>
                        </td>
                      </tr>
                    </tbody>
                  </table>
                  <u></u>
                    <u></u>Bio<u></u>
                    Dario Trevisan was born in the Province of Venice,
                    Italy, in 1987. He received the M.S. degree in
                    mathematics from the University of Pisa, in 2011,
                    and the Ph.D. degree in mathematics from the Scuola
                    Normale Superiore, Pisa, Italy, in 2014. He is
                    currently Associate Professor at the University of
                    Pisa in Probability and Mathematical Statistics. His
                    current research focuses on applications of
                    Stochastic Analysis and Optimal Transportation to
                    Quantum Information Theory and Machine Learning. He
                    is co-author of more than 30 research articles. In
                    2021, he was awarded the Guido Fubini Prize for his
                    contributions to Probability in Analysis and
                    Mathematical Physics. <u></u>
                  <table>
                    <tbody>
                      <tr>
                        <td><img src="http://datascience.maths.unitn.it/events/qml2023/LeonardoBanchi.jpg" alt="Leonardo Banchi" width="150"></td>
                        <td>
                          <table rules="none" cellspacing="0" cellpadding="3" border="0">
                            <tbody>
                              <tr>
                                <td>
                                  <h2>Leonardo Banchi</h2>
                                </td>
                              </tr>
                              <tr>
                                <td> <i>(University of Firenze)</i> </td>
                              </tr>
                              <tr>
                                <td> <a href="https://leonardobanchi.github.io/" target="_blank">Personal
                                    website</a> </td>
                              </tr>
                            </tbody>
                          </table>
                        </td>
                      </tr>
                    </tbody>
                  </table>
                  <u></u>
                    <u></u>Bio<u></u>
                    Leonardo Banchi is an Associate Professor of
                    Theoretical Physics of Matter at the Department of
                    Physics and Astronomy of the University of Florence
                    (Firenze). He received his PhD in Florence and
                    worked as a post-doc at ISI foundation (Torino),
                    University College London and Imperial College
                    London (UK). He also worked as a scientist in the
                    industry, at Xanadu Inc. (Toronto, Canada). Leonardo
                    Banchi&#39;s main research interests are quantum
                    algorithms for simulating many-body physics and
                    machine learning, quantum information and
                    communication theory. He currently works on formal
                    and theoretical aspects of quantum machine learning,
                    such as classifying the complexity of learning
                    quantum properties of physical objects directly from
                    data. He has published in several journals including
                    Nature (Reviews) Physics , Nature Computational
                    Science, Nature Communications, npj Quantum
                    Information, Quantum, PRX, PRX Quantum and Physical
                    Review Letters. <u></u>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600schedule">Schedule</h2>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600to-be-announced">To be announced</h2>
                  <h2 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600accomodation">Accomodation</h2>
                  <p>In terms of accommodation in Trento during the time
                    of the summer school, you may want to consider:</p>
                  <ul>
                    <li><a href="https://www.agriturpontealto.it/" target="_blank">Agritur Ponte Alto</a> <a href="mailto:info@agriturpontealto.it" target="_blank">info@agriturpontealto.it</a></li>
                    <li><a href="https://www.estercamere.it/" target="_blank">Camere Ester Povo</a><a href="mailto:camere.ester@gmail.com" target="_blank">camere.ester@gmail.com</a></li>
                    <li><a href="https://www.hotelamerica.it/en/" target="_blank">Hotel America</a> <a href="mailto:info@hotelamerica.it" target="_blank">info@hotelamerica.it</a></li>
                    <li><a href="https://www.accademiahotel.it/" target="_blank">Hotel Accademia</a> <a href="mailto:info@accademiahotel.it" target="_blank">info@accademiahotel.it</a></li>
                    <li><a href="https://www.grandhoteltrento.com/" target="_blank">Grand Hotel Trento</a> <a href="mailto:reservation@grandhoteltrento.com" target="_blank">reservation@grandhoteltrento.com</a></li>
                    <li><a href="https://www.nh-hotels.it/hotel/nh-trento" target="_blank">NHHotel</a> <a href="mailto:nhtrento@nh-hotels.com" target="_blank">nhtrento@nh-hotels.com</a></li>
                    <li><a href="https://www.hoteleverest.it/" target="_blank">Hotel Everest</a> <a href="mailto:info@hoteleverest.it" target="_blank">info@hoteleverest.it</a></li>
                    <li><a href="https://www.villamadruzzo.com/" target="_blank">Villa Madruzzo</a> <a href="mailto:info@villamadruzzo.it" target="_blank">info@villamadruzzo.it</a></li>
                  </ul>
                  <h1 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600our-sponsors">Our Sponsors</h1>
                  <ul>
                    <li><a href="https://www.maths.unitn.it/" target="_blank"><img src="http://datascience.maths.unitn.it/events/qml2023/unitn.jpg" alt="Department of Mathematics, University of
                          Trento" width="250"></a></li>
                    <li><a href="https://quantumtrento.eu/" target="_blank"><img src="http://datascience.maths.unitn.it/events/qml2023/QTN.jpg" alt="Quantum Science and Technology in Trento" width="250"></a></li>
                    <li><a href="https://www.tifpa.infn.it/" target="_blank"><img src="http://datascience.maths.unitn.it/events/qml2023/tifpa.png" alt="(TIFPA - Trento Institute for Fundamental
                          Physics and Applications" width="250"></a></li>
                  </ul>
                  <h1 id="m_6618242650295637535m_-5982226327966145820m_-6345493040023535600organizers">Organizers</h1>
                  <ul>
                    <li>Sonia Mazzucchi (University of Trento, TIFPA and
                      Q@TN) <a href="mailto:sonia.mazzucchi@unitn.it" target="_blank">sonia.mazzucchi@unitn.it</a></li>
                    <li>Claudio Agostinelli (University of Trento) <a href="mailto:claudio.agostinelli@unitn.it" target="_blank">claudio.agostinelli@unitn.it</a></li>
                    <li>Gian Paolo Leonardi (University of Trento) <a href="mailto:gianpaolo.leonardi@unitn.it" target="_blank">gianpaolo.leonardi@unitn.it</a></li>
                    <li>Valer Moretti (University of Trento, TIFPA and
                      Q@TN) <a href="mailto:valter.moretti@unitn.it" target="_blank">valter.moretti@unitn.it</a></li>
                  </ul>
                
              </div>
            </div>
          </div>
          
            <div>
              <div><br>
              </div>
            </div>
          
          <div>
            <ul>
              <li><a href="https://telegram.me/daTascieNceTN" target="_blank"><span><u></u> <u></u> </span>
                  <span>daTascieNceTN</span> </a> </li>
            </ul>
          </div>
          <div>
            <p>daTa scieNce is the web site of the students
              in Mathematics for daTa scieNce at the Departement of
              Mathematics, University of Trento </p>
            <p>Copyright 2017 daTa scieNce team - These web
              pages used the <a href="http://creativecommons.org/licenses/by-nc/2.0/" target="_blank">Creative Commons BY-NC 2.0</a>
              license.</p>
          </div>
          <pre cols="72">-- 
Prof. Valter Moretti, PhD
Head of the Doctoral School in Mathematics
Department of Mathematics - Trento University
<a href="https://moretti.maths.unitn.it/home.html" target="_blank">https://moretti.maths.unitn.it/home.html</a></pre>
        </div>
      </div>
    </div>
  </div>

</div></div></div>
_______________________________________________<br>
dottorati_matematica_italia mailing list -- <a href="mailto:dottorati_matematica_italia@lists.dm.unipi.it" target="_blank">dottorati_matematica_italia@lists.dm.unipi.it</a><br>
To unsubscribe send an email to <a href="mailto:dottorati_matematica_italia-leave@lists.dm.unipi.it" target="_blank">dottorati_matematica_italia-leave@lists.dm.unipi.it</a><br>
</div></div>