<div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif"><div class="gmail_default" style="font-family:verdana,sans-serif"><div class="gmail_default" style="font-family:verdana,sans-serif">Dear all, <br></div><div class="gmail_default" style="font-family:verdana,sans-serif"><br></div><div style="font-family:verdana,sans-serif" class="gmail_default">the
next speaker of the "very informal seminars" series is Mariarosa Mazza: please find below the title and the abstract of her talk. <br></div><div style="font-family:verdana,sans-serif" class="gmail_default"><br></div><div style="font-family:verdana,sans-serif" class="gmail_default">Mariarosa's seminar is scheduled for<b> Monday, March 27, 2pm</b>, and it will take place in the <b>Conference Room</b> of <b>IMATI-CNR</b>.</div><div style="font-family:verdana,sans-serif" class="gmail_default"><br></div><div><div style="font-family:verdana,sans-serif" class="gmail_default">Should you need any further information, please feel free to contact us.</div><div style="font-family:verdana,sans-serif" class="gmail_default"><br></div><div style="font-family:verdana,sans-serif" class="gmail_default">Best regards, <br></div><div style="font-family:verdana,sans-serif" class="gmail_default"><br></div><div style="font-family:verdana,sans-serif" class="gmail_default">Andrea, Laura and Lorenzo<font color="#888888"><font color="#888888"><br></font></font></div><div style="font-family:verdana,sans-serif" class="gmail_default"><font color="#888888"><font color="#888888"><br></font></font></div><div style="font-family:verdana,sans-serif" class="gmail_default"><font color="#888888"><font color="#888888">%%%%%%%%%%%%%%%</font></font></div><div style="font-family:verdana,sans-serif" class="gmail_default">Title: Some numerical linear algebra considerations on fractional
derivatives<br>
<br>
Abstract: Fractional derivatives are a mathematical tool that
received much attention in the last decades because of their
non-local behavior which has been demonstrated to be useful when
modeling anomalous diffusion phenomena appearing, e.g., in imaging
or electrophysiology. Two of the most famous definitions of
fractional derivatives are the Riemann-Liouville and the Caputo
ones. In presence of bounded domains, the two formulations
coincide only for sufficiently smooth functions that satisfy
homogeneous conditions at the boundary. We aim at uncovering how
much this lack of equivalence reflects on their discretized
counterparts by analyzing the structure and the spectrum of the
matrices obtained after a B-spline collocation discretization. A
discussion on how the retrieved information can be leveraged for
solving the associated linear systems is provided, together with a
selection of numerical experiments that validate our findings.</div></div></div></div><br><span class="gmail_signature_prefix">-- </span><br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div><div><div><span style="font-family:verdana,sans-serif">Laura Spinolo<br></span></div><span style="font-family:verdana,sans-serif">IMATI-CNR<br></span></div><span style="font-family:verdana,sans-serif">via Ferrata 5, 27100 Pavia, Italy <br></span></div><span style="font-family:verdana,sans-serif">Web: <a href="http://arturo.imati.cnr.it/spinolo/" target="_blank">http://arturo.imati.cnr.it/spinolo/</a><br></span></div><span style="font-family:verdana,sans-serif">Email: <a href="mailto:spinolo@imati.cnr.it" target="_blank">spinolo@imati.cnr.it</a></span> <br></div></div></div></div></div></div></div></div></div></div></div></div></div>