<div dir="ltr"><span style="color:rgb(0,0,0)">Dear all,</span><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)">For the <i>next appointment</i> of the series of seminars "Insalate di Matematica", <b>Eugenio Bellini</b> (Università degli studi di Milano Bicocca) will give a talk. </span></div><div dir="auto"><span style="color:rgb(0,0,0)">The speaker will deliver the talk <u>in presence</u> and the meeting will also be broadcasted <u>online</u> (see below for more information).</span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)">Here the details:</span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)"><u>Date and time</u>: <b>15th of November 2023, 4:00 pm (CET)</b></span></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Title</u>: <span style="background-color:rgb(255,229,153)">"Geometry of surfaces in contact sub-Riemannian manifolds</span></font><font color="#000000"><span style="background-color:rgb(255,229,153)">"</span></font></div><div dir="auto"><font color="#000000"><span style="background-color:rgb(255,229,153)"><br></span></font></div><div dir="auto"><font color="#000000"><u>Abstract</u>:</font> In this talk, after giving a quick introduction to contact
sub-Riemannian geometry, I will present some results concerning the
induced geometry of embedded surfaces. We will see how not all surfaces
inherit a natural metric-space structure and classify the generic ones
that admit an induced distance. Time permitting, we will classify, in
terms of combinatorial objects, the generic metric spaces that can
emerge as surfaces embedded in contact sub-Riemannian manifolds</div><div dir="auto"><br></div><div dir="auto"><font color="#000000"><u>Keywords:</u></font> Differential geometry, sub Riemannian geometry, contact geometry</div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><u><b>Information to attend in room 3014</b></u></div><div dir="auto">The seminar will take place in room 3014, at the building U5-Ratio, Università degli Studi di Milano Bicocca.</div><div dir="auto"><br></div><div dir="auto"></div><div dir="auto"><u><b>Information to attend online <br></b></u></div><div dir="auto"><a href="https://unimib.webex.com/unimib/j.php?MTID=m3c536ba5a33f71bb9d6a3bc9b00992ad">https://unimib.webex.com/unimib/j.php?MTID=m3c536ba5a33f71bb9d6a3bc9b00992ad</a> (password: Insalate, 46725283 from phones)</div><div dir="auto"><br></div><div dir="auto"><div dir="auto">You can find the poster of the event in the attachment. </div><div dir="auto">We are looking forward to seeing you! </div><div dir="auto"><br></div><div dir="auto"></div><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica23/</a></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000">The organizers: Ettore Marmo, Simone Gallivanone, Fabio Mastrogiacomo, Marco Fusari, Tommaso Toti and Matteo Tarocchi.</font></div></div></div></div></div></div>