<div dir="ltr"><span style="color:rgb(0,0,0)">Dear all,</span><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)">For the <i>next appointment</i> of the series of seminars "Insalate di Matematica", <b>Marco Vergani</b> (Università degli Studi di Firenze) will give a talk. <br></span></div><div dir="auto"><div dir="auto"><span style="color:rgb(0,0,0)">The speaker will deliver the talk <u>in presence</u> and the meeting will also be broadcasted <u>online</u> (see below for more information).</span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><div dir="auto"><span style="color:rgb(0,0,0)">Here the details:</span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div dir="auto"><span style="color:rgb(0,0,0)"><u>Date and time</u>: <b>17th of January 2024, 4:30 pm (CET)</b></span></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Title</u>: <span style="background-color:rgb(255,229,153)">"Rationality of finite groups: groups with low-in-index fields of values"</span></font></div><div dir="auto"><font color="#000000"><span style="background-color:rgb(255,229,153)"><br></span></font></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Abstract</u>:</font> The interplay between groups and fields has been subject of study for
centuries. With the rise of representation theory we were able to
consider groups as acting over vector spaces in a natural way, creating a
new possible connection that relates the irreducibile actions to the
field generated by the trace of the representation. Those fields give us
a lot of information about the group itself. In this seminar we will
focus on groups with field of values that are quadratic extensions of
the rationals and we will define tools that allow us to detect how far
the group is from a rational action.</div><div dir="auto"><br></div><div dir="auto"><font color="#000000"><u>Keywords:</u></font> Finite groups, representation theory, quasi-rational groups, cut groups,Gruenberg-Kegel graph.</div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><u><b>Information to attend in room 3014</b></u></div><div dir="auto">The seminar will take place in room 3014, at the building U5-Ratio, Università degli Studi di Milano Bicocca.</div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><u><b>Information to attend online<br></b></u></div><div dir="auto"><a href="https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad</a></div><div dir="auto">(password: insalate, 46725283 from phones)</div><div dir="auto"><br></div><div dir="auto"><div dir="auto">You can find the poster of the event in the attachment. </div><div dir="auto">We are looking forward to seeing you! <br></div><div dir="auto"><br></div><div dir="auto"><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica23/</a></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000">The organizers: Ettore Marmo, Simone Gallivanone, Fabio Mastrogiacomo, Marco Fusari, Tommaso Toti and Matteo Tarocchi.</font></div></div></div></div></div></div></div></div></div></div></div>