<div dir="ltr"><div id="gmail-:s1" class="gmail-Ar gmail-Au gmail-Ao" style="display:block"><div id="gmail-:rx" class="gmail-Am gmail-aiL gmail-Al editable gmail-LW-avf gmail-tS-tW gmail-tS-tY" aria-label="Corpo del messaggio" role="textbox" aria-multiline="true" style="direction:ltr;min-height:259px" tabindex="1" aria-controls=":uc" aria-expanded="false">Dear all,<div dir="auto"><br></div><div dir="auto">We remind you <b>today</b>'s<b> </b>appointment of the series of seminars "Insalate di Matematica".</div><div dir="auto">Here are the details:</div><div dir="auto"><br></div><div dir="auto"><u>Speaker</u>: <i>Francesca Pistolato</i> (<span style="color:rgb(0,0,0)">University of Luxembourg</span>)<br></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><span style="color:rgb(0,0,0)"><u>Date and time</u>: </span><span style="color:rgb(0,0,0)"><b>3rd of April 2024, 4:30 pm</b></span><span style="color:rgb(0,0,0)"><b> (CET)</b></span></div></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Title</u>: </font><font color="#000000"><span style="background-color:rgb(255,229,153)">"Limit theorems for p-domain functionals of stationary Gaussian random fields: an introduction</span></font><font color="#000000"><span style="background-color:rgb(255,229,153)">"</span></font></div><br></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Abstract</u>:</font> The topic of the talk is the asymptotic behaviour of the <i>p-domain functionals</i> of stationary Gaussian random fields.
Ideally, we continue the investigation started during the “BiLux 2023
PhD seminar’’ and answer some of the questions raised there.
To be accessible to a non-specialist audience, at first we give a naive
introduction to the field of studies around stationary Gaussian fields
and their functionals, giving some tools from Malliavin-Stein method and
stating Breuer-Major theorem: a cornerstone in the understanding of the
asymptotic behaviour of our objects of interest. Finally, by making
further assumptions on the form of the covariance of the underlying
Gaussian field, we will show how the asymptotic behaviour of <i>p</i>-domain
functionals can be simply obtained from that of 1-domain functionals,
explaining in a new light and in a more systematic way some results from
the recent literature.<div dir="auto"><br></div><div dir="auto">The talk is based on the work “Limit theorems for <i>p</i>-domain
functionals of stationary Gaussian fields”, with N. Leonenko, L. Maini
and I. Nourdin.</div></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000"><u>Keywords:</u></font> Central limit theorem; stationary Gaussian fields; long-range
dependance; Malliavin-Stein method; Hermite rank; p-domain functional<div dir="auto"><br><br></div></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><u><b>Information to attend in room 3014</b></u></div><div dir="auto">The seminar will take place in room 3014, at the building U5-Ratio, Università degli Studi di Milano Bicocca.</div><div dir="auto"><br></div><div dir="auto"></div><div dir="auto"><u><b>Information to attend online<br></b></u></div><div dir="auto"><div dir="auto"><div dir="auto"><a href="https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad" target="_blank">https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad</a> (password: insalate, 46725283 from phones)<a href="https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad" target="_blank"></a></div><a href="https://unimib.webex.com/unimib/j.php?MTID=m101728a0c0258813b6aa97783fb11fad" target="_blank"></a></div><a href="https://unimib.webex.com/unimib/j.php?MTID=m3c536ba5a33f71bb9d6a3bc9b00992ad" target="_blank"></a></div><div dir="auto"><div id="m_1398113139916687946m_1557104255583827781m_-4439392858642327092m_5555831848437307896gmail-:183" style="direction:ltr;margin:8px 0px 0px;padding:0px;font-size:0.875rem;font-family:"Google Sans",Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div id="m_1398113139916687946m_1557104255583827781m_-4439392858642327092m_5555831848437307896gmail-:17t" style="font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;font-kerning:auto;font-feature-settings:normal;font-stretch:normal;font-size:small;line-height:1.5;font-family:Arial,Helvetica,sans-serif;overflow:hidden"><div dir="ltr"><div dir="auto"><div dir="auto"><div dir="auto"><div dir="auto"><br></div><div dir="auto">For further information, please visit our website: <a href="https://sites.google.com/view/insalate-di-matematica" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://sites.google.com/view/insalate-di-matematica</a> or contact us at <a href="mailto:insalate.matematica@unimib.it" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">insalate.matematica@unimib.it</a>. Find us also on our Instagram page: <a href="https://www.instagram.com/insalate_di_matematica22/" rel="noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://www.instagram.com/insalate_di_matematica23/</a></div><div dir="auto"><br></div><div dir="auto"><div dir="auto"><font color="#000000">The organizers: Ettore Marmo, Simone Gallivanone, Fabio Mastrogiacomo, Marco Fusari, Tommaso Toti and Matteo Tarocchi.</font></div></div></div></div></div></div><div></div><div></div><div><br><br></div></div></div></div></div></div></div></div></div></div>