Course Title. STOCHASTIC DIFFERENTIAL EQUATIONS Teacher(s). Zdzislaw Brzezniak

Overview. The course is also devoted to PhD students in Mathematics and Physics. The prerequisites are probability and measure theory, basic stochastic processes including Wiener and Poisson processes.

When. 9 June 2025 - 4 July 2025

Where. Collegio Nuovo

Contacts. zdzislaw.brzezniak@york.ac.uk, enrico.priola@uniopv.it

Abstract. Rigorous definition of the Itô integral. Study of martingale, Markov and strong Markov properties, Doob and Burkholder inequalities. Stochastic differential equations: local and global solutions under locally Lipschitz assumptions. Applications to PDEs (Feynman-Kac formula) and Mathematical Finance (Black-Scholes formula).

References.

[1] Z. Brzeźniak, T. Zastawniak, Basic stochastic processes. A course through exercises. Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 1999. x+225 pp.

[2] P. Baldi, Stochastic calculus. An introduction through theory and exercises. Universitext. Springer, Cham, 2017. xiv+627 pp.