<div dir="ltr">Seminari di Matematica Applicata, Dipartimento di Matematica "F. Casorati" e Istituto del CNR IMATI "E. Magenes" di Pavia.<br><br>Mercoledì 19 Marzo 2025, alle ore 15 precise, presso l'aula Beltrami del Dipartimento di Matematica,<br><br><h4 style="padding:0px;margin:0px 0px 10px;clear:none;color:rgb(23,28,36);font-weight:300;font-stretch:normal;font-size:24px;line-height:1.2;font-family:Montserrat,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,sans-serif;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;box-sizing:border-box">Davide Carazzato (University of Vienna)</h4><div><br></div><h4 style="padding:0px;margin:0px 0px 10px;clear:none;color:rgb(23,28,36);font-weight:300;font-stretch:normal;line-height:1.2;font-family:Montserrat,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,sans-serif;box-sizing:border-box"><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif">terrà un seminario dal titolo:</span></h4><div><span style="color:rgb(34,34,34);font-family:Arial,Helvetica,sans-serif"><br></span></div><h3 style="padding:0px;margin:5px 0px 8px;clear:none;color:rgb(23,28,36);font-weight:300;font-stretch:normal;font-size:28px;line-height:1.2;font-family:Montserrat,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,sans-serif;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;box-sizing:border-box">A partial optimal transport functional in an isoperimetric problem.</h3><div><br></div><div><span style="color:rgb(61,61,61);font-family:Roboto,sans-serif;font-size:15px">Abstract: We consider a shape optimization problem of isoperimetric type, containing a repulsive term defined in terms of an optimal transport problem. We provide a brief introduction about the basic geometric properties of the partial optimal transport term, and we focus on its maximizers to sustain the intuition about its repulsive nature. In fact, through a symmetrization technique, we show that the unique maximizer of the optimal transport term is the ball, in complete competition with the perimeter term. This is based on a joint work with Almut Burchard and Ihsan Topaloglu.</span><br></div><div><span style="color:rgb(61,61,61);font-family:Roboto,sans-serif;font-size:15px"><br></span></div><div><div><span style="color:rgb(61,61,61);font-family:Roboto,sans-serif;font-size:15px;font-variant-ligatures:normal;text-decoration-style:initial;text-decoration-color:initial"><br class="gmail-Apple-interchange-newline">-----------------------------------------</span></div><div><span style="color:rgb(61,61,61);font-family:Roboto,sans-serif;font-size:15px;font-variant-ligatures:normal;text-decoration-style:initial;text-decoration-color:initial"><a href="https://matematica.unipv.it/ricerca/cicli-di-seminari/seminari-di-matematica-applicata/" target="_blank">https://matematica.unipv.it/ricerca/cicli-di-seminari/seminari-di-matematica-applicata/</a><div class="gmail-yj6qo"></div><div class="gmail-adL"></div><div class="gmail-adL"></div><div class="gmail-adL"></div><div class="gmail-adL"></div></span></div><div class="gmail-adL"><br></div><br class="gmail-Apple-interchange-newline"></div></div>